

Understanding the Evolution of Adolescentsô Computational Thinking

Skills within the Globaloria Educational Game Design Environment

Alex Games
Adjunct Associate Professor

Telecommunication, Information Studies and Media
Michigan State University

games@msu.edu

2

ABSTRACT

This document is a continuation of a study that between 2011 and 2012 examined the

evolution of adolescentsô computational thinking in the context of Globaloria, an innovative

learning platform centered on game creation invented by the World Wide Workshop.

 Since Jeannette Wing's 2006 treatise on computational thinking, researchers at the

intersection of the fields of education, the learning sciences, and computational thinking

have focused on developing curricula that help youth to develop these highly valued skills.

These skills are 21st-century problem-solving abilities and built on the foundation of critical

thinking, logical thinking, and using computation to solve complex problems (Wing, 2006;

National Academy of Sciences, 2011). Design and project based learning have already

been recognized as strong methods of developing these skills (Harel and Papert, 1991;

Kolodner, 2003), however, game design has recently emerged at the forefront of this

research (Basawapatna, Koh, Repenning, et al., 2011; Games, 2008, 2010; Stolee and

Fristoe, 2011), seeking to capitalize on the enormous popularity of video games, with even

the White House recognizing and supporting efforts to teach computational thinking via

game design (White House, 2009).

 Globaloriaôs goal is to foster computational thinking and STEM skills and concepts

in middle school and high school students by immersing them in a social network for

learning through game design and programming, using a robust curriculum and digital

platform that leverages industry-standard tools to conceive, plan, program and publish

web-based games focused on educational and social issues. Globaloria classrooms are

designed around constructionist pedagogies (Papert and Harel, 1991; Harel, 1991), and

feature a project-based curriculum supported by a framework of Web 2.0 technologies,

and an online community of school classrooms, educators, and professional game

3

designers.

 Using a theoretical framework developed by Games (2010) to study thinking in the

context of game design, and case study methodology supported by multimodal content

and discourse analyses, the study examined the evolution of 30 studentsô computational

thinking and STEM learning and literacy as a function of their changes in language use,

design strategies, and game artifact production (10 of these students were also

interviewed last year, providing year-to-year longitudinal data on the evolution of their

skills in the Globaloria classroom). Findings suggest that over time and within a

scaffolded game design-based curriculum, students can develop computational thinking

skills and deep understandings and engagement with STEM subjects. Results also show

that a shift towards a design-based approach to the curriculum can positively affect

students' design thinking, resulting in more engaging and thoughtful games.

INTRODUCTION

The World Wide Workshop invented and launched the Globaloria Platform in 2006, and

has been the provider and operator of the Globaloria Network nationwide and worldwide in

the past 6 years (see www.WorldWideWorkshop.org/map). Globaloria is constituted by a

social learning network, within which is embedded a well structured, game-making

curriculum that allows students to "create educational games and interactive simulations,

for their own personal and professional development, and for the social and economic

benefit of their communities" (World Wide Workshop, 2010). At the core of Globaloria are

five interconnected digital platforms where students and educators invent, build and share

their learning with one another and Globaloria staff. The platforms leverage industry

standard tools such as a learning platform WikiMedia, Google Tools, Adobe Flash, Skype,

4

and others to support the year-long learning and collaboration following a 100+ hour

curriculum and over 100 game-design tutorials. (see Figures 1a, 1b, and 1c).

Figure 1a: An Example of a step-by-step ñdrawing tutorialò on the Globaloria Platform.

Figure 1b: Globaloria provides each participating class or group with a unique space customized

with the schoolôs name, the class and teacher name, and unique user gallery and course syllabus.

5

Figure 1c: An Example of a tutorial for ñEmbedding Textò in Flash Actionscript is easy to find on the
Globaloria Platform. Over 50 tutorials are available for students to use as-needed, during their

learning process of game design and programming.

Students also have their own personal learning platform wiki pages in the Globaloria

Learning Platform. To these they can post their blogs, notes, assignments, favorite games

and animations, and information about themselves (non-private information, of course -

favorite movie, actor, video game, food, etc.) (see Figure 2).

6

Figure 2: An Example of a studentôs ñProfile Pageò on the Globaloria Platform. Each participating
class gets a User Gallery, and Course Syllabus, as well as 100-150 hour-long Game Design

Curriculum and Shared Resources (links are on the left-nav).

The students' learning platform wikis are also connected to the school-learning platform so

that they are able to find and access help from the lessons and tutorials, as well as

communicate with each other. Alongside the community and personal learning platform

wiki is Adobe Flash (while explaining Flash and how it works is important, that explanation

is not within the scope of this paper. Explanations can be found at these links: Format,

Actionscript, and User Experience). As mentioned before, students in Globaloria learn to

create educational games, simulations, and animations, all of which is done in Flash. Like

many programming languages, Flash is a relatively complex language to learn, especially

for middle school students. However, similarly to the libraries of codes that professional

programmers may use, Globaloria provides libraries of commonly used codes on its

school learning platform, as well as tutorials and examples of how and when to use those

scripts. For example, pieces of code that make objects move and follow other objects can

http://en.wikipedia.org/wiki/Adobe_Flash#Format
http://en.wikipedia.org/wiki/ActionScript
http://en.wikipedia.org/wiki/Adobe_Flash#User_experience

7

be found on the school learning platform, and the students simply have to find the

appropriate code for the game or animation that they are working on, copy and paste that

code into their Actionscript, and update the instance names. Alternatively, students can

find and download .fla files (similarly to how Word documents are identified as .doc or

.docx files, Flash files are identified as .fla files) from the school learning platform and

replace the assets with their own, or to see how the Globaloria staff created that particular

animation or game so that they can replicate it on their own (see Figure 3).

Figure 3: An Example of a step-by-step tutorial on how to program ñCollision Detectionò in Flash

Actionscript on the Globaloria Platform.

In terms of the structure of Globaloria, it is and functions like a full class, either as a stand-

alone elective or integrated into a subject-specific class, such as history or math. In all

implementation models, students meet once a day and receive assignments and

homework. However, due to the more creative nature of Globaloria, classroom time is

structured more like a design-based class - students are given an assignment and allowed

to use whatever tools they need to complete that assignment, and guidance and support

are given by teachers in the classroom and virtually by Workshop staff and volunteer

experts when necessary, creating a blended learning environment. Unique from the

traditional educational format of a teacher lecturing at students with little to no meaningful

8

interactions, this structure often combines multiple disciplines when completing

assignments and contains constant teacher-student interaction and feedback.

 During the assessment, for example, we broke the classes into groups and had the

groups build a game about the predator-prey relationship between the Canadian lynx and

the snowshoe hare, which was given to them in the form of a short passage. At a

minimum, students needed to create original assets, research needed to be done, and the

appropriate code had to be found in order to complete this assignment, and each member

of each team contributed to this process. Our observations of the classrooms also

confirmed that the teachers are constantly providing feedback and assistance to students.

 Evidence that computer games and simulations can be used for learning in STEM

literacy has become increasingly available as research in learning sciences, educational

psychology, and media studies has become available (Games and Squire, 2011; National

Academy of Sciences, 2010). Modern videogames are complex sociotechnical systems

where players constantly engage in cycles of play interactions with rule-bound computer

simulations built by teams of designers, computer programmers, and digital artists. To

participate in the production of a videogame, learners must be able to solve a series of

complex problems using computer technologies, and think in terms of the computer tools

they will use to enable or limit them from doing so.

 The body of knowledge and practice skills necessary to solve problems effectively

using computing tools has been termed Computational Thinking (CT) by several scholars,

and as Wing (2010) has argued, these skills and knowledge will be fundamental for

countries like the U.S. to maintain competitive workforces in the 21st century. The primary

reason for this is that the advent of modern computational technologies (Computers and

other ICTôs) have fundamentally transformed the social, economic and even demographic

9

mechanisms of a globalized world (Gee, Hull, and Lankshear, 1996). Todayôs workplaces

are rapidly becoming sophisticated sociotechnical systems, where everything from serving

a hamburger to producing the newest space exploration technology requires people

capable of understanding the connections between software, hardware, information, and

the way they mediate human activity. Social media and mobile technologies have made

our social, entertainment, and civic lives exist in a sea of information, where effective (and

safe) participation, require citizens capable of understanding and taking advantage of the

powerful computational tools that now lie at their fingertips.

OPERATIONALIZING COMPUTATIONAL THINKING IN GAME CREATION

Computational thinking is a construct that encompasses a constellation of forms of

thought and practice that professionals can use to solve problems effectively using the

logical, mathematical, and representational tools that computers make available to work

through data, and transform it into actionable information.

Given the nascent nature of CT as a field of study, no widely accepted theoretical

framework yet exists that characterizes it fully, given the overlapping nature of

computation across fields such as computer science, engineering, and mathematics, each

one of which is interested on very specific aspects within it.

Wingôs work has time and again posited that computational thinking is a set of skills

broadly applicable in general life. However, at the point of writing the vast majority of the

CT frameworks proposed by scholars examining itôs emergence within games have been

firmly and narrowly situated in the discourse and practices of computer science, by and

large giving preference to different subsets of problems within that field as the ad-hoc

standards against which CT evidence is measured. For example, Repenning and his

10

colleagues have used Computational Thinking Patterns in much of their work (Repenning,

at al., 2010, 2011; Basawapatna and Ioannidou, 2009, 2011) with an overt emphasis on

how those patterns appear in software code in a 2d game creation platform called

agentsheets. The specific interest CT focus of the study was to observe the code

implementations of specific algorithms (e.g. hill climbing, collisions, diffusion) as students

attempted to replicate preexistent game designs. Similar frameworks have been proposed

in Berland and Leeôs work on board games (2011) and Stolee and Fristoeôs (2011) work

with Kodu Gamelab.

We argue such narrow focus is problematic to understanding computational thinking in

game creation, as it tends to put a single discipline lens in an activity that is inherently

multidisciplinary. Creating games is creating sociotechnical systems, as for the game

creator, solving the problem of how players will perceive and experience the play created

by the game is just as fundamental as solving the problem of making the game software

work to enable such play. Hence, we required a framework capable of examining CT in

game creation not only at the technical level of software production, but also at the

cognitive/psychological, and social/aesthetic levels inherent to the process of making

games.

Toward this end, we decided to use a framework for analysis that synthesizes two others,

described in the following sections.

Part 1. Computational Thinking

First, In order to operationalize CT for this particular study, we built on the Exploring

Computational Thinking Framework proposed by Google, (2012). The framework

characterizes CT according to five distinct dimensions that encompass habits of mind and

practice germane to solving problems using computational tools. These are:

11

1. Decomposition is the breaking down, or ability to break down, a problem into its

core components. For example, when we give directions to someone for how to

get to our house, we are decomposing the process of getting from one place to

another. In game design, we can decompose a game into its subsequent parts,

such as its assets or coding.

2. Pattern Recognition is the ability to see or identify recurring systemic connections
between objects, as well as recurring subsystems in systems. Google uses the
example of using patterns in stock prices to help us decide when to buy and sell. In
video games, patterns help the player to identify character behavior, which allows
the player to make better decisions on how to play the game.

3. Pattern Generalization and Abstraction is the ability to recall previously

encountered patterns and use them to aid in the solving of applicable problems in

different contexts; a form of near transfer that is characterized by studentsô ability to

abstract. One example from Google is from mathematics, where we write

equations in terms of variables instead of numbers, which allows us to solve

problems using different values. An example in game design is creating an item-

crafting mechanic, which allows players to simulate the experience of crafting

various items, such as hammers or pickaxes. While the real-life experience does

not directly translate with the virtual experience, it does abstract the experience,

giving the player a similar experience.

4. Algorithm Design is the construction of a step-by-step process towards the

solution of a design problem. The more sophisticated this skill, the more efficient

the algorithm will be. One example of an algorithm is a play in football that a coach

may design for his players to follow during a game. In game design, programmers

follow algorithms, or step-by-step instructions, for writing code that will make the

game function properly.

5. Information Modeling refers to the studentsô ability to extract data from sources

relevant to a phenomenon and to use it to construct a model that can be

communicated to others. As an example, examining a table of daily ozone values in

a metropolitan area, and using them to construct a histogram to share with others

would be a form of modeling and visualization, but constructing a game with rules

and mechanics based on the same values in a way that others could use them

would also be an example. In the item-crafting example, the designer would

analyze the core experience of crafting an item. The resulting gameplay mechanic

is a model, or simulation, of the actual process of crafting such items.

12

Recent reviews of the field have recognized that across the board, most of the aspects of

this framework are commonly acknowledged whether explicitly or implicitly in other

studies. The use of abstractions to model world phenomena, the ability to think of these

phenomena in terms of systemic interactions, the use of symbol systems to represent and

manipulate those abstractions, the use of algorithms to structure and control the flow of

information in modelling processes and problem solutions, the use of flow control

techniques such as conditional logic and iteration to optimize those algorithms, and the

use of iterative refinement, among the key thinking skills that must be put into practice for

effective computation in real world activities beyond computer science. (Grover and Pea,

2013).

Another advantage of this framing of CT is that itôs dimensions 1) are measurable,

meaning that there are concrete and perceptible processes and products that can be

captured by systematic research either through observation or other means; 2) They are

applicable to a broad range of professions and activities involving the use of modern

computing tools beyond computer science, which in our view is a necessary prerequisite

to differentiate computational thinking from other forms of logical and mathematical

abstract thought; 3) they incorporate or encompass a broad swath of dimensions of

computational thinking that have been discussed as relevant to K-12 instruction (Barr and

Stephenson, 2011).

In our analysis we operationalize the term ñpatternsò as organizations of elements into

13

recognizable forms. These could be patterns made of abstractions alone, software code

alone, visual representations alone, or as in most cases with modern videogames,

combinations of these and other components. In gaming and game creation practice

recognizing these patterns provide players with ñtools to think withò (Games, 2010) that

facilitate strategic problem solving. For example collection of characters in a video game

may appear to be moving randomly, but upon further inspection, experienced players will

observe that the characters always move from the top to the bottom of the screen, and

their movements are staggered at regular intervals. Noticing this pattern of behavior will

facilitate the players thinking of strategies to safely navigate the level.

Our framework and analyses also have a relative focus on pattern abstraction, which

distinguishes our analyses from other work that focuses more on pattern recognition and

computational processes (debugging, Boolean logic). We choose to focus on abstraction

and generalization because we feel that it is the most important dimension of CT; while

pattern identification is important, it is pattern abstraction and generalization that allows

someone to make use of those patterns in other contexts. Video games do an

exceptionally good job of forcing their players to perform pattern abstraction. In Batman:

Arkham City, for example, most of the bad guys in the game are unarmed and can be

subdued rather simply. Within a single group, there is little or nothing to distinguish one of

these thugs from another. As the player progresses, s/he will encounter thugs armed with

knives, guns, and shields. Aside from the actual weapon, these bad guys are always

dressed in a different color from the normal, unarmed thugs (red, blue, or orange vs.

gray). Taking down these thugs requires more complex action from the player.

Identification of the pattern (i.e., gray, gray, red) and appropriate action are critical for the

player to succeed in the game. Pattern abstraction is also critical in intermediate to higher

14

level mathematics, and is the basis for algebra and geometry. The Pythagorean theorem

requires students to be able to identify and apply a specific equation to a specific set of

problems, which can all be identified by specific patterns. In game design, a student may

often recognize the pattern of a moving object, but not necessarily be able to understand

the underlying code. As the student gains skill and knowledge, s/he may start to

understand that when an object moves, there is a specific piece of code that causes the

movement. Once they can identify and understand this, abstraction allows the student to

use that code in another game that might require the same or a similar type of movement.

We would like to note that in the fifth dimension, we have substituted the original google

term "visualization" for the term "modeling". Although visualization is an adequate enough

term in its broadest sense (games are media that encode information in a predominantly

visual form), we feel that modeling more accurately portrays our own thought processes

with respect to the interview tasks, which asked the students to construct interactive

models of a predator-prey relationship.

Part 2. Thinking in Game Design

Game creation is a complex, interdisciplinary field that has as its first and foremost goal to

create sociotechnical systems that engage human beings in play (Gee, 2007, Crawford,

2004, Schell, 2009). Modern videogames are seldom created by individuals, because their

complexity requires that different professionals have focus on specific aspects of the

system (e.g., software engineering, gameplay, art, production, business and marketing

strategy, and so on), and then use artifacts from software to design documents to paper

prototypes, to overcome their specific horizon of observation (Hutchins, 1993) ïi.e. their

ability to see how their actions affect other teams and how the actions of other teams

affect them- to help the game studio as a whole act as a learning organization where

15

knowledge of the overall sociotechnical system is distributed among employees.

In educational game creation, the games students create tend to have a much smaller

scope, and thus it is possible for them to grasp this diversity of domains to a sufficient

degree that they can produce a functional and playable system. In a series of studies of

children designing their own videogames, Games (2008; 2010) characterize the

sociotechnical practices and ways of thinking that students develop while creating games

in the classroom, and proposed a framework for analyzing and assessing learning in the

context of game production as a function of the acquisition of key constructs central to the

discourse of professional game designers (the role of designers in most professional

studios is to be the keepers of game design documents which establish the functional,

aesthetic, and technological specifications of the system, thus allowing them to serve as

central mediators between teams). The framework examines increasing sophistication in

this discourse as a function of the degree with which learnersô decisions, language, and

tool use reflect an increasing understanding of the nature of games as sociotechnical

systems, through an awareness of a) the affordances of the software code, materials,

assets and tools available to them in creating games, b) the abstractions necessary for an

idealized player to play a game with these materials (e.g. rules, mechanics, goals and so

on), and c) the probable ways in which real players would interpret and understand these

materials and abstractions during play. In addition, in framing game design thinking as

increasingly dialogic, the framework acknowledges the central importance of systematic

iterative refinement in the improvement not only of game software (i.e. debugging), but

also of the user experience created through it, and thus extends this dimension of

computational thinking to encompass the overall sociotechnical system being created.

Rooted in Discourse theory (Gee, 2005; Games, 2008), the framework sees these

16

dimensions as dialogic in nature, as ongoing conversations between one or more

designers and one or more players, mediated by the game artifact. Gameplay and game

refinement are acts of iterative progression toward a common construction of meaning

between the two parties, a common understanding. As learners become more adept at

thinking in terms of design, in this framework, their use of dialog to understand design as a

process becomes more apparent. Table 1 describes the scope and nature of the

evidence that would make each dialog overt.

Dialog Description

Material Dialog
Perspective

Refers to language and practices that reflect that students have an

understanding and use of the techniques necessary to construct a game system.

Akin to DiSessaôs notion of material intelligence (2002) For example, a designer

could not make a quality game using Flash, unless they understood both the

programming principles of Actionscript, as well as their connections to itsô vector

graphics system.

Ideal Player Dialog
Perspective

Refers to language and practices that reflect an understanding of the
abstractions that need to be encoded in the tools to transform a system of
materials into a play system, including the use of the specialist language that
game designers use to describe the possible actions that these abstractions
enable and limits for players (game rules, mechanics, etc). For example,
discussing the way that the rules in chess would define the possible ways in
which a player could move a pawn.

Real Player Dialog
Perspective

Refers to language and practices denoting an understanding of how to use

the game system built from the materials to encode knowledge and metaphors

that make it clear and overt to real players how the game is to be played. This

dialog also involves an understanding of the encoding of knowledge extraneous

to the game in order to support player decision making during the game. An

example of a failure to understand this would be a learner designing a game for

young children containing a lot of fast-scrolling text, with the expectation that

they would need to read this to play.

Table 1: Games' Three Dialog Framework.

As Games has shown (2008; 2010; 2011), becoming fluent in the three levels of dialog

gives them the tools to think of the creation of computer games as the process of

17

systematic problem solving where computation at the technical, psychological, and social

levels play key roles toward the construction sociotechnical systems of play (Games,

2010). This involves learning to see these systems as constituted by three different but

mutually necessary models, which are 1) models of automated interactions between

software objects (material dialog), 2) models of human-computer interactions bound by

abstract rule systems (ideal player dialog), and 3) models of expression and

communication of meaning defined by cultural conventions of fun and play (real player

dialog). As scholars have argued, it is precisely in the process of reconciling these three

levels of modeling, abstraction, and problem solving, that creating games provides

learners with powerful tools to support computational thinking (Lee, Martin, and Denner, et

al., 2011).

 Due to the dialogic nature of learning and thinking through game design, evidence

of studentsô progress is only visible in an analysis of learnersô ways of talking and doing

during the cycles of iterative refinement and continuous formative feedback that are

fundamental to game design. Once positioned as a dialog, an analysis of learning

evidence must necessarily include not only how a learner attempts to construct meaning

with the tools to think with at his/her disposal, but also the ways in which the learning

environment is supporting or failing to support such construction. When tools and curricula

support the dialogic process, students are gradually empowered to drive their own

learning, and are repositioned from an understanding of themselves as players (users of

games), to creators (owners of games), a principle that has been observed across the

board in other learning environments that support CT (Lee, Martin, and Denner, et al.,

2011).

18

RESEARCH QUESTIONS AND METHODS

Given the assumptions given by the above theoretical framework, this research aimed to

document the evolution of childrenôs computational thinking in the context of their

participation in the Globaloria curriculum, by answering the following research question:

1. In what ways does studentsô computational thinking in game design evolve over

time within the Globaloria context, as reflected by their discourse?

To answer the question, the authors used a qualitative methodology of case studies

(Stake, 1995) and, consistent with the three dialog framework, multimodal discourse

analyses (Gee, 2005) of learnersô games, design decisions, and tool use over a period of

six months of participation in Globaloria. The goal of the study was to produce a ñthick

descriptionò (Geertz, 1973) of the Globaloria learning ecology and its impact on

computational thinking over time.

In line with GlobaloriaËs constructionist philosophy this study examined childrenôs

learning from a socio-culturally situated perspective. In this perspective, language, action,

and thought are seen as integrally interconnected (Gee, 1992; Vygotsky, 1978; Wertsch,

1998; Engstrom, 2005), and evidence of changes in thought emerges from triangulating

evidence of changes in studentsô ways of enacting the solutions to design problems. Such

evidence was collected by coding video data for design decisions, talk about those

decisions (both captured through screen recordings), and the computational artifacts

resulting from and supporting those decisions (game software, paper game designs stored

in the Globaloria curriculum learning platform wiki) over time.

Data observations were coded according to categories generated from the

intersection of the three levels of thought in the three dialog framework, and how the five

dimensions of computational thinking would be applied in them. Table 2 summarizes

19

these codes.

20

Decomposition Pattern
Recognition

Pattern
Generalization
and
Abstraction

Algorithm
Design

Data Analysis
and
Visualization

Material
Perspective

Breaking a
problem into its
software
components.

Recognizing
patterns for
their software
components.

Applying
patterns made
of software
abstractions.

Designing
problem
solutions
based on the
affordances of
software
abstractions.

Surfacing
models for
algorithms
through
software
visualizations
and
programming.

Ideal
Perspective

Breaking a
problem into its
play
abstractions.

Recognizing
patterns for
their play
abstractions.

Applying
patterns of play
abstractions.

Designing
problem
solutions
based on
specific play
abstractions.

Surfacing
models of
algorithms
through play
mechanics
and play
elements.

Real
Perspective

Breaking a
problem into its
cultural
interpretations.

Recognizing
patterns for
their
sociocultural
interpretations
(e.g., genres).

Applying
patterns for
their
sociocultural
abstractions.

Designing
problem
solutions
through
sociocultural
abstractions.

Surfacing
models of
algorithms
through
cultural
imagery.

Table 2: Codes used for the analysis of computational thinking in game design.

Evidence of increases in sophistication in each one of the cells in the above matrix was

assessed through a rubric consisting of 4 levels. Level 1 displays an absence of any

evidence whether in their design decisions or their language, of that particular dimension

of computational thinking in game creation. Level 2 was displayed when students made

statements about their design process pointing to some knowledge to the particular

dimension, either using the specialist language of games, flash, programming, or so on.

Level 3 was displayed when students used statements and or concepts in the Globaloria

curriculum to give verbal explanations that detailed how that dimension had affected their

design decisions. Level 4 was displayed when students gave explanations using specialist

language or content, as well as demonstrated the use of the concepts applied in their

design decisions during the task.

21

 Data were collected from pre- and post-assessment protocols that consisted of

individual interactive interviews with Globaloria students, as well as from observations of

their design activities during Globaloria class over a period of 4 months. The interactive

interview consisted of a sequence of questions that began by requiring students to solve

various problems in game creation with Flash, while verbally articulating an explanation of

their design decisions during the solution process. Parallel video recordings of

participantsô and their computer screens were captured, with the goal of documenting

participantsô design decisions, choices for tool use, and language describing their thinking

and practices during each stage of the protocol.

 Each component of the interview consisted of a task involving the design and

construction of games or parts of games using flash and the Globaloria learning platform.

Each task was specifically designed to emphasize one of the individual dimensions of the

CT model in this study. The tasks were designed to be incremental, so that tasks later in

the protocol would require applying the dimensions previously tested, giving us more

opportunities to sample each dimension. These overlaps are noted where relevant.

 The assessment was not designed to get at declarative knowledge, but rather to

assess how well students were able to recall, construct, and apply their own knowledge in

the process of solving design problems, in line with the constructionist philosophy of the

Globaloria curriculum.

 The five dimensions, displayed by studentsô through design decisions, tool choices,

and verbal explanations of their solution strategies during each task, were the basis for

coding our observations for discourse analysis (Gee, 1999; 2005; 2007), as described in

Table 3:

22

Dimension Description
Heuristics for
Identification

Example

Decomposition

Students
were shown a
simple game
made in Flash
(see Figure a)
and asked to
recreate it.

¶ Background

¶ Marbles

¶ At least two
different pieces
of Actionscript
code.

Pattern
Recognition

Students
were asked to
compare and
contrast two
systems that
highlight the
concept of
collision
detection

¶ Points of
collision in
both the game
and the
learning
platform

¶ Events when
collision
detection is not
present.

Pattern
Generalization

Students
were asked to
apply a
similar
underlying
coding
scheme to a
similar design
and
mechanical
pattern.

¶ Assets
(piggybank
and money)

¶ Coding
required to
make the
money move.

Algorithm
Design

Students
were asked to
write out a
discrete set of
steps for
solving a
maze.

¶ Steps should
be written from
the first-person
perspective, as
directed.

23

Information
Modeling

Students
were given a
short story
about
predator-prey
relationships
and asked to
model that
relationship in
a game.

¶ The predator

¶ The prey

¶ Interdependent
nature of that
relationship (as
lynx go up,
hare go down;
as hare go
down, lynx go
down; etc.)

Table 3: The individual interview protocol, including the observation coding criteria.

Data were collected from middle schools in Austin, Texas and Elkins, West Virginia. Due

to the large number of schools running Globaloria in West Virginia, site selection was

random in that state. However, the East Austin College Preparatory Academy in Texas

was selected because it was the only school in Texas running Globaloria at the time. 15

students were interviewed in the Globaloria class in each site.

RESULTS

The data for this study were collected from two different sites over the two-year period of

the study. The goal was not to make comparisons across sites, but rather to get a broader

sample for longitudinal analysis. Table 4 gives a breakdown of the number of students at

each site, and the dates for the pre and post-assessments for each site. Participants were

all in middle school, ranging from 6th grade to 8th grade.

24

Site Number of
students

Pre Post

East Austin Prep,
Austin, Texas

15 2/19/12 ï 2/22/12 5/21/12 - 5/22/12

Tygarts Valley
Middle School,
Elkins, WV

15 3/7/12 ï 3/9/12 5/10/12 - 5/11/12

Table 4: Sample and dates.

Changes in Teaching Practice

One of the most fundamental changes observed in the overall Globaloria learning

ecosystem this year vs. last was a strongly increased emphasis on the part of instructors

to move away from instructor-centered teaching practices to learner-centered ones. A

particularly evident change was reflected in their desire to place emphasis on helping

students develop design oriented thinking and practices more closely aligned with

Globaloriaôs constructionist learning epistemology and pedagogical underpinnings, as

opposed to trying to cover all content in the platform in a linear fashion. This was evident

in both the changes to their discourse as well as their practices this year. In terms of

discourse, this pivot to a more design-centered form of instruction was exemplified by

typical teachersô interview responses to why they felt design was important in their

classroom, with statements indicating that learning to make learning games was ñlike

teaching a child to write me an essay without knowing what an essay is. You have to give

them a scaffold so they can know game designò, or decrying former yearsô lack of quality

games available that would integrate content and gameplay, stating that "there was simply

a lack of quality games out there that students made. I can't even think of a game where

they would be learning something through the actual game."

 In framing game creation as an analog to writing or focusing on the importance of the

25

learning that would take place in actual play, they were recognized the inherently learner-

centered nature of game creation, which in turn translated into important shifts in

classroom practice.

The ways in which these new practice orientation manifested itself in the classroom this

year were several. First, In terms of practices, while in past years the use of lectures and

individual work had been somewhat prevalent among teachers and students (especially at

the Texas site), this year peer collaboration in both the research and creation of game

content were much more prevalent. Second, there was a stronger emphasis within the

curriculum to provide learners with more and more diverse experiences with game types

and play patterns.

The result at post assessment phase this year was a collection of games with much

greater diversity and sophistication than in years past, where the quiz format had been

prevalent (see figures 7 and 8 for examples). In particular, evidence of deeper

computational thinking in these games can be seen in the thoughtful and deliberate way in

which they incorporated the learning content they intended to expose learners to within

the game mechanics of play, which for most games are the key activities players will

repeatedly perform, and where most of their attention will reside during play.

How did these changes take place and what role did computational thinking play in them?

The answer resides along the multiple dimensions of game design and CT examined in

our protocol, outlined in the following sections.

A more Dialogic Mindset, Debugging and Iteration

One of the central differences observed between this year and past years in both student

classroom practices and interviews was a much more pervasive use of systematic,

26

iterative refinement in all studentsô processes of game creation. This mimics the

observations previously conducted by Games in other design centered technology

learning environments (Games, 2008; Games and Kane, 2011). For Games, iterative

refinement is so central a pillar to the development of effective design thinking, that the

concept of the three levels of understanding necessary to develop good games as three

dialogs, reflects a key change that must take place in learnersô habits of mind and practice

before they can effectively learn from game creation. This iterative refinement perspective

transcends the three levels and binds them together as a mutually reinforcing system of

communication (Games, 2010). In computer science learning research, debugging is the

practice most representative of such dialogic perspective, and has been shown to be a

fundamental skill necessary for effective computational thinking (Berland & Lee, 2011).

In the case of Globaloria, the studentôs move to a dialogic approach to their project

development was present in the form of both debugging, -i.e. observing undesired

functionality in a piece of actionscript code, hypothesizing and coding itôs solution, and

testing it again- and game refinement ïi.e. observing undesired play behavior in the

system at a sociotechnical level, and then changing its rules, mechanics, or

representations to make it better-.

Debugging was typically evident within both the marble game and piggybank game tasks,

and by pre-test, 100% of the students showed at least one instance of debugging behavior

in their interviews. A typical example in the marble game was the students copying code

to make the marbles move directly from the platform into their game, noticing that the

code only allowed the marble to move along one axis, and then changing it to allow

diagonal movement (for details about this process, see last yearôs report). In the

piggybank task this year, a student would copy and paste the arrow key movement code

27

(and only the arrow key movement code) from the learning platform to his Actionscript.

The student would then test his game, and observe that the movement the code would

create was not what they wanted it to be. More often than not, students forgot to use the

stop() instruction at the end of the sequence of motion instructions, and at test time their

game would rapidly flash back and forth between the game scenes simply not move at all.

50% of the students would eventually figure out which code was missing by post-test, up

from less than 20%last year. The dialogic perspective also permeated studentsô

discourse, indicating its impact on their computational thinking habits. A typical example of

this took place when a West Virginia student found his game was not working. When the

researcher asked him to speculate on why that might be, he replied, "I'm probably missing

something...like a curly bracket, or something", which in turn provided him with a starting

point to begin a new cycle of testing and refinement.

Game refinement, on the other hand, was most typically present in the predator/prey task,

and in the marble game task. In the first, since students had the ability to co-design their

game with peers, the most evident form of game refinement would come from exchanges

where peers would observe an initial design in action, and provide feedback to those who

had implemented the design.

Figure 4. Discussing a game design and team responsibilities for a game design

This would be followed by the team engaging in a discussion about how the game could

28

be improved followed by a new round of implementation, critique, and so on.

In the marbles task, on the other hand, evidence of iterative refinement at the level of

game design was also often present, particularly during the process of breaking down a

game into its components and assembling a new one, which would often lead to

conversations about those design elements that would make the game play better. This is

discussed in detail in the following section.

Decomposition

In line with the findings of previous studies, the evolution of studentsô thinking towards

increasingly sophisticated computational thinking and practices was evident this time

around as well. While during the first year only a fraction of the students sampled had

been able to identify the basic components of the marbles minigame, this time around all

of the students in both their pre and post-assessments were able to identify marbles,

background, and code as necessary components of the game. The studentsô overall

confidence and competency with Flash was noticeably higher in the second year, with

most of the students appropriating into their discourse the abstract relationship between

visual assets, needed symbols, and their specific function within the software, and

applying them to the successful creation of their own game.

This was displayed in three key changes within studentsô discourse when describing their

decomposition of the game into its main parts:

First, nearly all of the students incorporated the object and symbol abstraction into their

descriptions, especially at the moment of using code to change the state of visual

elements. Statements such as a student needing of "add code to move the object during

the game", and "I have to convert the marbles into symbols in order to be able to add code

29

to them" were typically part of a majority of descriptions by post-test, as was the

application of these elements to recreating the game, as Figure 5, which shows a

studentôs typical use of objects to switch between scenes in the game, suggests. These

are of central importance to studentsô computational thinking from a material perspective,

since they strongly indicate their appropriation of the underlying object-oriented mode

behind actionscript in their thinking about games.

Second, the sophistication of this appropriation was evident in their ability to differentiate

between different visual assets and the data types that would most effectively represent

their functionality in code. By post assessment, most students showed widespread

knowledge of the differences between the function of ñbuttonò symbols and ñmovieclipò

symbols. Typically, this was evident in their discourse as well as their design practices. An

example of this took place during a studentsô process of reconstruction of his Marble

game. He began thinking out loud, and mentioned that he needed "to convert the start

button to a button, which is different from the marbles, which need to be movie clips."

When asked how he knew the difference, he said that he learned it in class, stating

specifically that ñbuttons do different things only when you click on them, but movie clips

make [more] things happen". These statements stood in stark contrast with the previous

yearôs analyses of the game by students, where the start button for the game had by and

large been ignored as a key component.

Third, a move toward a more sophisticated level in studentsô computational thinking this

year was also evident in their use of systemic abstract patterns to describe key game

components in this task. Their discourse incorporated a nearly pervasive use of functional

subsystems (rather than just single assets or objects) to describe key components of the

game in their decomposition task. For 76% of the students at preassessment, and 93% at

30

post assessment, descriptions involving the use of actionscript code to ñmake the marbles

moveò, ñswitch scenesò, or incorporate ñcollision detectionò were elements identified as

key components. This stood in stark contrast with the year before, when nearly all

students on the same stages only used visual and superficial game components such as

the marbles, text, or background, as the components identified as key for decomposition.

Figure 5: The scene-switching code that a student used during their recreation of the Marble game.

The above evidence also indicates that this year their evolution as computational thinkers

was supported by a more robust set of thinking patterns focused on the ideal play level.

As Games has pointed out (2008), this level of thought is characterized by the prominence

it gives to abstractions not of software function, but of gameplay, that is, of games as play

systems. A central characteristic of this form of thinking is the prominence it gives to the

31

role that ñthe playerò (i.e. an idealized player) and the potential play experience he will

have with the game system have on framing the design of the formal rules and the core

mechanics (the key player interactions with the game) that will make the game work.

This increased accounting for an ideal player as part of the play system they intended to

recreate was evident in the marked number of students in both Texas (from 5 in the year 1

to 12 in year 2) and West Virginia, Texas (none in year 1 and 8 in year 2) who by post-

assessment identified ñInstructionsò as a necessary part of the game, as they would

enable players to understand the rule system and be able to play.

 Their discourse and design decisions also showed how a stronger emphasis on a

target player audience for their game facilitated more sophisticated decomposition. During

their process of reproducing the game at post-test, all students incorporated statements

focused on providing players more input and mechanisms for direct interaction with the

game. Statements such as "I'd make it where the green [marble] could be moved around

by the player", ñI would set different goals for the marbles to get toò , ñI would add enemies

and obstacles for the marble to navigateò (87% of students reported this at post-test) were

typical of at this stage, reflecting the appropriation of fundamental game design

abstractions such as game goals and game mechanics, and player challenge (Games,

2008, 2010; Salen and Zimmerman, 2007) into their thinking processes during game

creation. In practice, this resulted in overall Globaloria game projects with much more

diversity and play sophistication than in previous years, with the student-made games

looking more like professional games (i.e., platformers, puzzle games, narrative games,

etc.; see Figure 7).

Pattern Recognition

32

This year, all students interviewed recognized the visual elements of the collision

detection pattern in the marbles and seal games (see Table 3). However, probing deeper

showed an uneven understanding across students of the underlying code logic governing

the patternôs functionality. Revisiting the Marble task, 76% of students were able to

identify general purpose codes (scene switching, collision detection, movement via

keyboard or mouse input) as fundamental components constituting the pattern during the

pre-assessment, but increased to 93% by post-assessment. By and large, their

explanations held the intuition that collision detection represented a software event where

a system effect would take place where two objects overlapped, as in the case of the

bullets and the seal in the task, or the square and the circle in the learning platform tutorial

(see Figure 6). However, an interesting misconception remained for 15% of the students,

who claimed that collision detection in the first level of the seal and shark game was

present when in fact it wasnôt, justifying their claim on the fact that the seal running

through the sharks would most closely resemble the visual effect of the demo in the

platform. Such misconception is important, as it highlights a need (similar to last yearôs

with the overall game patterns), to clarify the underlying principles that define a general

collision event in code logic through multiple examples, versus its visual effect

counterparts.

33

Figure 6: The animation on the learning platform caused students to form an incorrect

conceptualization of collision detection.

Pattern Generalization and Abstraction

This year, students showed substantial improvement in the tasks within this dimension.

86% showed increased proficiency with Flash from pre-assessment to post-assessment,

as they successfully converted a drag-and-drop game into a keyboard-based game, when

in previous years nearly half had not even been able to begin using Flash for the task and

limited themselves to paper. In addition, the gains in proficiency between pre and post

assessment in this task translated into increased efficiency in the application of the code

and mechanics pattern to designing a new flash mini-game, since task completion times

went from a median of 9 minutes to a median of 7, in addition to substantial qualitative

34

difference in the completeness of their content, where typical aspects included change

from partial to full interactivity with the game mechanics (money and piggybank on the

screen, vs. player being able to move the money to the piggybank), and increased

accuracy in the physical model being simulated (money disappearing into the piggybank

when placed there) became common. This increased proficiency is consistent with

observations made through the previous two dimensions, and marks an important shift in

studentsô thinking with abstractions this year, as where last year many were able to

translate the play pattern at the level visual elements and mechanics using exactly the

same underlying code (mainly copying and pasting from the platform, giving emphasis to a

mainly material way of thinking), this yearôs observations showed their ability to recognize

these same elements and transport them into a new game, but use a different underlying

code base and still make the game work (showing a more balanced emphasis on material,

ideal, and real play) .

 Evidence of Pattern Generalization and Abstraction also became evident in the

predator-prey relationships task, but re-emphasized last yearôs observation that in a

collaborative setting, students computational thinking seems to be amplified and

scaffolded by peers and teachers. When asked individually, all students were able to

describe the main themes and components of the passage (i.e. that lynx prey on

snowshoe hare, that hare consume vegetation and reproduce in large numbers, and that

they both live in the Canadian forests), but only 17% could independently identify the

dynamic relationship between the populations of the lynx and hare described in the

theoretical statements at the end of the passage. However when the time came to create

a game model, 93% of the students used the wolf and bunny mini-game as a template for

illustrating the lynx and hare passage in Flash. While this attests to a strong evolution in

35

studentsô pattern generalization development, it also highlighted some opportunities for

future development, as the section on modelling discusses.

Algorithm Design

The task for Algorithm Design was changed from last yearôs design to get more explicitly

at how students will write down a discrete set of directions. In this case, they were asked

to write the steps for solving a simple maze, as if they were standing in the maze itself.

The solutions varied widely in terms of form and sophistication, with the simplest being

one-word steps ï ñleft, right, straightò ï and the most complex being complete sentences ï

ñTurn left at the first intersection.ò Further analysis of their instructions gives some insight

into their thought processes, particularly regarding how they perceive themselves in

relation to the maze.

 As the instructions were stated, the correct solution to the maze should start out

looking similar to this: walk straight, turn left at the first intersection, follow path and turn

right at second intersection, follow path and turn right at second intersection, etc.

Following these directions would correctly get the maze-solver to the end of the maze. A

majority of the students, 80%, used this point of view in both the pre and post-

assessments. The remaining 20%, however, used a top-down point of view for solving the

maze, in which typical student solutions used statements such as ñgo down, turn left, go

up, go rightò, and so on. This, in essence, inverted the directions that one should follow:

go down (not forward), turn right (not left), follow path, and turn down (not right). These

inverted directions had very important ramifications for the rest of their design process, as

they framed their perspective of what the solution would be, with regards to the students'

ability to place themselves within the maze. Their decision (or instinct) to solve the maze

36

from their own point of view showed a displacement, or disconnection, between

themselves and the maze itself, and in turn provides a very important insight into how the

ñcorrectò solution to a problem from an algorithmic perspective can be substantially shifted

depending on their initial perspective. The most important implication of this aspect comes

at the level of assessment, as it implies that the dialogic perspective students are

developing would also require a dialogic form of assessment to be effectively evaluated.

 Students' abilities to design algorithms, however, were not limited to the maze task.

Further evidence for this dimension was most notably observed during the Marble and the

piggybank tasks. During the Marble task, the students were asked to list all of the

components of that game need to recreate the Marble game that they had just played.

They were then asked to go ahead and try to recreate, to the best of their ability, that

game. In the piggybank task, the students were asked to make a game where the player

used the keyboard to move money into a piggybank. It was in these moments, where

students displayed their ability to identify a discrete set of steps that would lead to a

functioning game. These sets of steps are the same general set of steps that all of the

students utilized during both the pre and post-assessments.

1. Marble task:

a. Students' first step was to either use the assets provided to them, or create

their own, and then convert these assets to symbols, so that they could be

manipulated on the timeline and via Actionscript.

b. The second step was to rename the layers on which the assets were placed

(background, marbles, actions).

c. A third step, which was not performed by some of the students, was to

create separate scenes containing the title scene and the gameplay scene.

37

For the students who included the title screen, this impacted their fourth

step.

d. The fourth step was to search the learning platform for code that could be

used to make the marbles move and collide.

i. This step was observed to be the least clearly executed step, as

some of the students did not know any of the codes that should be

used. However, students who did know some of the codes (scene

switching, collision detection, linear movement) were not always able

to find them with ease.

2. Piggybank task:

a. The first step in this task was always to create new assets (in contrast with

the Marble task, no assets were provided). The sample was split almost

evenly between using the shape tools and the freeform drawing tool to

create their piggybank and money. In all interviews, both pre and post-

assessment, this was the longest step.

b. The second step was to convert these assets to symbols. Notably, two

students in West Virginia and one student in Texas forgot to convert their

assets to symbols, which created problems when they went to test their

games. Again, the debugging skill was observed here, as all of them were

quickly able to figure out what went wrong.

c. After the students created their assets, their next step was always to start

searching their learning platform for the necessary code. At the beginning of

this step, students must be able to recognize the code that they would need,

and then match that to something that they have seen in their experiences.

38

This allows them to quickly search for the correct lesson on the learning

platform.

d. The final step was to copy and paste the code, and then replace the

instance names with those that they created. Once this was done, the

students tested their games.

Examining these steps shows that the students had, in essence, a protocol for creating

Flash games: create assets, find code on the learning platform, copy and paste that code

into their own games, replace the instance names, and finally, test the game. Any errors

that occurred would be corrected, and then the game would be playtested and iterated at

a gameplay level. This process in game and software design is commonly called a

pipeline, and is a form of computational thinking that transcends not only computer

science and games, but touches virtually every project where complexity must be

harnessed into a process of scalable creation.

 All of the students this year were heavily reliant upon this set of steps, but future

work on this dimension should focus on including additional complexities in the problem

spaces, so that observations can be made on how well students are able to adapt this

protocol to new situations. Such observations could provide rich data on near-transfer of

these computational thinking skills.

Information Analysis and Modelling

Observations of this dimension stayed consistent with the previous dimensions with

regard to the studentsô surface-level pattern abstractions. As noted earlier, all of the

students could easily explain the main points of the passage, which was that it was about

the snowshoe hare and the Canadian lynx. However, very few of the students (17%)

39

could independently explain the dynamic relationship between the two speciesô

populations. This had important consequences on the design decisions for their games.

40

Figure 7: Side-by-side comparison of a student's code from the IAV task and the code from the wolf
and bunny minigame.

Similar to last year, many of the students based their games directly on the wolf and

bunny minigame that many of them had completed earlier in the year or in previous years

(see Figure 7). This minigame is the first form of player input that students learn, and it

makes sense that they would match this game format with the lynx and hare passage, as

they are both about predator and prey. Unlike last year, the limited scope of designs

observed from the students stands in contrast with the previous dimensions, where more

creative thinking and higher proficiency with Flash were observed. Classroom

observations of student work and game samples from the student showcase also

contradict the observations made during this task.

41

Figure 7a: A game from 2011 where the player simply drags leaves to a giraffe. The primary content
of the game is on a separate "About" screen, which is accessed from the title screen.

42

Figure 7b: A platform game that showcases the new variety of gameplay mechanics that students
worked on during the 2011-2012 school year. The chicken is controlled with the Arrow keys, and can

jump with the Spacebar.

It is clear that the students do understand how to design a wider variety of games and

gameplay types in Flash (see Figures 7a and 7b), but in terms of presenting and

illustrating data from a written passage, they did not show the same ability to design

diverse experiences. It is still important to note that, however, that the students were able

to draw comparisons between two extremely similar patterns and produce working games

from these abstractions.

 The observations made directly from the task show that when the option is

available, students will tend to create simulations based on previous experiences or

lessons. The evidence also suggests that left to their own resources, students still found it

